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8.0 Program Overview 
 
Driver distraction is a major contributing factor to automobile crashes. National Highway 
Traffic Safety Administration (NHTSA) has estimated that approximately 25% of crashes 
are attributed to driver distraction and inattention (Wang, Knipling, & Goodman, 1996). 
The issue of driver distraction may become worse in the next few years because more 
electronic devices (e.g., cell phones, navigation systems, wireless Internet and email 
devices) are brought into vehicles that can potentially create more distraction. In 
response to this situation, the John A. Volpe National Transportation Systems Center 
(VNTSC), in support of NHTSA's Office of Vehicle Safety Research, awarded a contract 
to Delphi Electronics & Safety to develop, demonstrate, and evaluate the potential 
safety benefits of adaptive interface technologies that manage the information from 
various in-vehicle systems based on real-time monitoring of the roadway conditions and 
the driver's capabilities. The contract, known as SAfety VEhicle(s) using adaptive 
Interface Technology (SAVE-IT), is designed to mitigate distraction with effective 
countermeasures and enhance the effectiveness of safety warning systems. 
 
The SAVE-IT program serves several important objectives. Perhaps the most important 
objective is demonstrating a viable proof of concept that is capable of reducing 
distraction-related crashes and enhancing the effectiveness of safety warning systems. 
Program success is dependent on integrated closed-loop principles that, not only 
include sophisticated telematics, mobile office, entertainment and safety warning 
systems, but also incorporate the state of the driver. This revolutionary closed-loop 
vehicle environment will be achieved by measuring the driver’s state, assessing the 
situational threat, prioritizing information presentation, providing adaptive 
countermeasures to minimize distraction, and optimizing advanced collision warning. 
 
To achieve the objective, Delphi Electronics & Safety has assembled a comprehensive 
team including researchers and engineers from the University of Iowa, University of 
Michigan Transportation Research Institute (UMTRI), General Motors, Ford Motor 
Company, and Seeing Machines, Inc. The SAVE-IT program is divided into two phases 
shown in Figure i. Phase I spans one year (March 2003--March 2004) and consists of 
nine human factors tasks (Tasks 1-9) and one technology development task (Task 10) 
for determination of diagnostic measures of driver distraction and workload, architecture 
concept development, technology development, and Phase II planning. Each of the 
Phase I tasks is further divided into two sub-tasks. In the first sub-tasks (Tasks 1, 2A-
10A), the literature is reviewed, major findings are summarized, and research needs are 
identified. In the second sub-tasks (Tasks 1, 2B-10B), experiments will be performed 
and data will be analyzed to identify diagnostic measures of distraction and workload 
and determine effective and driver-friendly countermeasures. Phase II will span 
approximately two years (October 2004--October 2006) and consist of a continuation of 
seven Phase I tasks (Tasks 2C--8C) and five additional tasks (Tasks 11-15) for 
algorithm and guideline development, data fusion, integrated countermeasure 
development, vehicle demonstration, and evaluation of benefits. 
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It is worthwhile to note the SAVE-IT tasks in Figure i are inter-related. They have been 
chosen to provide necessary human factors data for a two-pronged approach to 
address the driver distraction and adaptive safety warning countermeasure problems.  
The first prong (Safety Warning Countermeasures sub-system) uses driver distraction, 
intent, and driving task demand information to adaptively adjust safety warning systems 
such as forward collision warning (FCW) systems in order to enhance system 
effectiveness and user acceptance. Task 1 is designed to determine which safety 
warning system(s) should be deployed in the SAVE-IT system. Safety warning systems 
will require the use of warnings about immediate traffic threats without an annoying rate 
of false alarms and nuisance alerts. Both false alarms and nuisance alerts will be 
reduced by system intelligence that integrates driver state, intent, and driving task 
demand information that is obtained from Tasks 2 (Driving Task Demand), 3 
(Performance), 5 (Cognitive Distraction), 7 (Visual Distraction), and 8 (Intent).  
 
The safety warning system will adapt to the needs of the driver. When a driver is 
cognitively and visually attending to the lead vehicle, for example, the warning 
thresholds can be altered to delay the onset of the FCW alarm or reduce the 
intrusiveness of the alerting stimuli. When a driver intends to pass a slow-moving lead 
vehicle and the passing lane is open, the auditory stimulus might be suppressed in 
order to reduce the alert annoyance of a FCW system. Decreasing the number of false 
positives may reduce the tendency for drivers to disregard safety system warnings. 
Task 9 (Safety Warning Countermeasures) will investigate how driver state and intent 
information can be used to adapt safety warning systems to enhance their effectiveness 
and user acceptance. Tasks 10 (Technology Development), 11 (Data Fusion), 12 
(Establish Guidelines and Standards), 13 (System Integration), 14 (Evaluation), and 15 
(Program Summary and Benefit Evaluation) will incorporate the research results 
gleaned from the other tasks to demonstrate the concept of adaptive safety warning 
systems and evaluate and document the effectiveness, user acceptance, driver 
understandability, and benefits and weaknesses of the adaptive systems. It should be 
pointed out that the SAVE-IT system is a relatively early step in bringing the driver into 
the loop and therefore, system weaknesses will be evaluated, in addition to the 
observed benefits.  
 
The second prong of the SAVE-IT program (Distraction Mitigation sub-system) will 
develop adaptive interface technologies to minimize driver distraction to mitigate against 
a global increase in risk due to inadequate attention allocation to the driving task. Two 
examples of the distraction mitigation system include the delivery of a gentle warning 
and the lockout of certain telematics functions when the driver is more distracted than 
what the current driving environment allows. A major focus of the SAVE-IT program is 
the comparison of various mitigation methods in terms of their effectiveness, driver 
understandability, and user acceptance. It is important that the mitigation system does 
not introduce additional distraction or driver frustration. Because the lockout method has 
been shown to be problematic in the aviation domain and will likely cause similar 
problems for drivers, it should be carefully studied before implementation. If this method 
is not shown to be beneficial, it will not be implemented.  
 

 8-5



The distraction mitigation system will process the environmental demand (Task 2: 
Driving Task Demand), the level of driver distraction [Tasks 3 (Performance), 5 
(Cognitive Distraction), 7 (Visual Distraction)], the intent of the driver (Task 8: Intent), 
and the telematics distraction potential (Task 6: Telematics Demand) to determine 
which functions should be advised against under a particular circumstance. Non-driving 
task information and functions will be prioritized based on how crucial the information is 
at a specific time relative to the level of driving task demand. Task 4 will investigate 
distraction mitigation strategies and methods that are very well accepted by the users 
(i.e., with a high level of user acceptance) and understandable to the drivers. Tasks 10 
(Technology Development), 11 (Data Fusion), 12 (Establish Guidelines and Standards), 
13 (System Integration), 14 (Evaluation), and 15 (Program Summary and Benefit 
Evaluation) will incorporate the research results gleaned from the other tasks to 
demonstrate the concept of using adaptive interface technologies in distraction 
mitigation and evaluate and document the effectiveness, driver understandability, user 
acceptance, and benefits and potential weaknesses of these technologies.  
 
In particular, driving task demand and driver state (including driver distraction and 
impairment) form the major dimensions of a driver safety system. It has been argued 
that crashes are frequently caused by drivers paying insufficient attention when an 
unexpected event occurs, requiring a novel (non-automatic) response. As displayed in 
Figure ii, attention to the driving task may be depleted by driver impairment (due to 
drowsiness, substance use, or a low level of arousal) leading to diminished attentional 
resources, or allocation to non-driving tasks1. Because NHTSA is currently sponsoring 
other impairment-related studies, the assessment of driver impairment is not included in 
the SAVE-IT program at the present time. One assumption is that safe driving requires 
that attention be commensurate with the driving demand or unpredictability of the 
environment. Low demand situations (e.g., straight country road with no traffic at 
daytime) may require less attention because the driver can usually predict what will 
happen in the next few seconds while the driver is attending elsewhere. Conversely, 
high demand (e.g., multi-lane winding road with erratic traffic) situations may require 
more attention because during any time attention is diverted away, there is a high 
probability that a novel response may be required.  It is likely that most intuitively drivers 
take the driving-task demand into account when deciding whether or not to engage in a 
non-driving task.  Although this assumption is likely to be valid in a general sense, a 
counter argument is that problems may also arise when the situation appears to be 
relatively benign and drivers overestimate the predictability of the environment.  Driving 

                                            
1 The distinction between driving and non-driving tasks may become blurred sometimes. 
For example, reading street signs and numbers is necessary for determining the correct 
course of driving, but may momentarily divert visual attention away from the forward 
road and degrade a driver's responses to unpredictable danger evolving in the driving 
path. In the SAVE-IT program, any off-road glances, including those for reading street 
signs, will be assessed in terms of visual distraction and the information about 
distraction will be fed into adaptive safety warning countermeasures and distraction 
mitigation sub-systems. 
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environments that appear to be predictable may therefore leave drivers less prepared to 
respond when an unexpected threat does arise. 
 
A safety system that mitigates the use of in-vehicle information and entertainment 
system (telematics) must balance both attention allocated to the driving task that will be 
assessed in Tasks 3 (Performance), 5 (Cognitive Distraction), and 7 (Visual Distraction) 
and attention demanded by the environment that will be assessed in Task 2 (Driving 
Task Demand). The goal of the distraction mitigation system should be to keep the level 
of attention allocated to the driving task above the attentional requirements demanded 
by the current driving environment. For example, as shown in Figure ii, “routine” driving 
may suffice during low or moderate driving task demand, slightly distracted driving may 
be adequate during low driving task demand, but high driving task demand requires 
attentive driving. 
 
 

Attention
allocated to

driving tasks

Attentive driving

“Routine” driving

Distracted driving

Impaired driving

Low Driving
Demand

High Driving
Demand

Moderate Driving
Demand

Attention
allocated to
non-driving

tasks

Figure ii. Attention allocation to driving and non-driving tasks 
 
 
It is important to note that the SAVE-IT system addresses both high-demand and low-
demand situations. With respect to the first prong (Safety Warning Countermeasures 
sub-system), the safety warning systems (e.g., the FCW system) will always be active, 
regardless of the demand. Sensors will always be assessing the driving environment 
and driver state. If traffic threats are detected, warnings will be issued that are 
commensurate with the real time attentiveness of the driver, even under low-demand 
situations. With respect to the second prong (Distraction Mitigation sub-system), driver 
state including driver distraction and intent will be continuously assessed under all 
circumstances. Warnings may be issued and telematics functions may be screened out 
under both high-demand and low-demand situations, although the threshold for 
distraction mitigation may be different for these situations. 
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It should be pointed out that drivers tend to adapt their driving, including distraction 
behavior and maintenance of speed and headway, based on driving (e.g., traffic and 
weather) and non-driving conditions (e.g., availability of telematics services), either 
consciously or unconsciously. For example, drivers may shed non-driving tasks (e.g., 
ending a cell phone conversation) when driving under unfavorable traffic and weather 
conditions. It is critical to understand this "driver adaptation" phenomenon. In principle, 
the "system adaptation" in the SAVE-IT program (i.e., adaptive safety warning 
countermeasures and adaptive distraction mitigation sub-systems) should be carefully  
implemented to ensure a fit between the two types of adaptation: "system adaptation" 
and "driver adaptation". One potential problem in a system that is inappropriately 
implemented is that the system and the driver may be reacting to each other in an 
unstable manner. If the system adaptation is on a shorter time scale than the driver 
adaptation, the driver may become confused and frustrated. Therefore, it is important to 
take the time scale into account. System adaptation should fit the driver's mental model 
in order to ensure driver understandability and user acceptance. Because of individual 
difference, it may also be important to tailor the system to individual drivers in order to 
maximize driver understandability and user acceptance. Due to resource constraints, 
however, a nominal driver model will be adopted in the initial SAVE-IT system. Driver 
profiling, machine learning of driver behavior, individual difference-based system 
tailoring may be investigated in future research programs. 
 

Communication and Commonalities Among Tasks and Sites 
 
In the SAVE-IT program, a "divide-and-conquer" approach has been taken. The 
program is first divided into different tasks so that a particular research question can be 
studied in a particular task. The research findings from the various tasks are then 
brought together to enable us to develop and evaluate integrated systems. Therefore, a 
sensible balance of commonality and diversity is crucial to the program success. 
Diversity is reflected by the fact that every task is designed to address a unique 
question to achieve a particular objective. As a matter of fact, no tasks are redundant or 
unnecessary. Diversity is clearly demonstrated in the respective task reports. Also 
documented in the task reports is the creativity of different task owners in attacking 
different research problems.  
 
Task commonality is very important to the integration of the research results from the 
various tasks into a coherent system and is reflected in terms of the common methods 
across the various tasks. Because of the large number of tasks (a total of 15 tasks 
depicted in Figure i) and the participation of multiple sites (Delphi Electronics & Safety, 
University of Iowa, UMTRI, Ford Motor Company, and General Motors), close 
coordination and commonality among the tasks and sites are key to program success. 
Coordination mechanisms, task and site commonalities have been built into the 
program and are reinforced with the bi-weekly teleconference meetings and regular 
email and telephone communications. It should be pointed out that little time was 
wasted in meetings. Indeed, some bi-weekly meetings were brief when decisions can 
be made quickly, or canceled when issues can be resolved before the meetings. The 
level of coordination and commonality among multiple sites and tasks is un-precedented 
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and has greatly contributed to program success. A selection of commonalities is 
described below. 
 
Commonalities Among Driving Simulators and Eye Tracking Systems In Phase I     
Although the Phase I tasks are performed at three sites (Delphi Electronics & Safety, 
University of Iowa, and UMTRI), the same driving simulator software, Drive SafetyTM 
(formerly called GlobalSimTM) from Drive Safety Inc., and the same eye tracking system, 
FaceLabTM from Seeing Machines, Inc. are used in Phase I tasks at all sites. The 
performance variables (e.g., steering angle, lane position, headway) and eye gaze 
measures (e.g., gaze coordinate) are defined in the same manner across tasks. 
 
Common Dependent Variables An important activity of the driving task is tactical 
maneuvering such as speed and lane choice, navigation, and hazard monitoring. A key 
component of tactical maneuvering is responding to unpredictable and probabilistic 
events (e.g., lead vehicle braking, vehicles cutting in front) in a timely fashion. Timely 
responses are critical for collision avoidance. If a driver is distracted, attention is 
diverted from tactical maneuvering and vehicle control, and consequently, reaction time 
(RT) to probabilistic events increases. Because of the tight coupling between reaction 
time and attention allocation, RT is a useful metric for operationally defining the concept 
of driver distraction. Furthermore, brake RT can be readily measured in a driving 
simulator and is widely used as input to algorithms, such as the forward collision 
warning algorithm (Task 9: Safety Warning Countermeasures). In other words, RT is 
directly related to driver safety. Because of these reasons, RT to probabilistic events is 
chosen as a primary, “ground-truth” dependent variable in Tasks 2 (Driving Task 
Demand), 5 (Cognitive Distraction), 6 (Telematics Demand), 7 (Visual Distraction), and 
9 (Safety Warning Countermeasures).  
 
Because RT may not account for all of the variance in driver behavior, other measures 
such as steering entropy (Boer, 2001), headway, lane position and variance (e.g., 
standard deviation of lane position or SDLP), lane departures, and eye glance behavior 
(e.g., glance duration and frequency) are also be considered. Together these measures 
will provide a comprehensive picture about driver distraction, demand, and workload.  
 
Common Driving Scenarios For the tasks that measure the brake RT, the "lead 
vehicle following" scenario is used. Because human factors and psychological research 
has indicated that RT may be influenced by many factors (e.g., headway), care has 
been taken to ensure a certain level of uniformity across different tasks. For instance, a 
common lead vehicle (a white passenger car) was used. The lead vehicle may brake 
infrequently (no more than 1 braking per minute) and at an unpredictable moment. The 
vehicle braking was non-imminent in all experiments (e.g., a low value of deceleration), 
except in Task 9 (Safety Warning Countermeasures) that requires an imminent braking. 
In addition, the lead vehicle speed and the time headway between the lead vehicle and 
the host vehicle are commonized across tasks to a large extent. 
 
Subject Demographics It has been shown in the past that driver ages influence 
driving performance, user acceptance, and driver understandability. Because the age 
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effect is not the focus of the SAVE-IT program, it is not possible to include all driver 
ages in every task with the budgetary and resource constraints. Rather than using 
different subject ages in different tasks, however, driver ages are commonized across 
tasks. Three age groups are defined: younger group (18-25 years old), middle group 
(35-55 years old), and older group (65-75 years old). Because not all age groups can be 
used in all tasks, one age group (the middle group) is chosen as the common age group 
that is used in every task. One reason for this choice is that drivers of 35-55 years old 
are the likely initial buyers and users of vehicles with advanced technologies such as 
the SAVE-IT systems. Although the age effect is not the focus of the program, it is 
examined in some tasks. In those tasks, multiple age groups were used. 
 
The number of subjects per condition per task is based on the particular experimental 
design and condition, the effect size shown in the literature, and resource constraints. In 
order to ensure a reasonable level of uniformity across tasks and confidence in the 
research results, a minimum of eight subjects is used for each and every condition. The 
typical number of subjects is considerably larger than the minimum, frequently between 
10-20. 
 
Other Commonalities In addition to the commonalities across all tasks and all 
sites, there are additional common features between two or three tasks. For example, 
the simulator roadway environment and scripting events (e.g., the TCL scripts used in 
the driving simulator for the headway control and braking event onset) may be shared 
between experiments, the same distraction (non-driving) tasks may be used in different 
experiments, and the same research methods and models (e.g., Hidden Markov Model) 
may be deployed in various tasks. These commonalities afford the consistency among 
the tasks that is needed to develop and demonstrate a coherent SAVE-IT system. 
 

The Content and Structure of the Report 
 
The report submitted herein is a final report for Task 8 (Intent) that documents the 
research progress to date (March 2003-March 2004) in Phase I. In this report, the major 
results from the literature review are summarized to determine the research needs for 
the present study, the experimental methods and resultant data are described, 
diagnostic measures and preliminary algorithms are identified, and human factors 
recommendations are offered. 
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8.1 INTRODUCTION 

The objective of Task 8 (Intent) is to determine a set of diagnostic indicators that 
support the inference of host-driver intentions such that the intended maneuver can be 
predicted before it is initiated.  Driver intent information could potentially benefit both the 
"Distraction Mitigation" and "Safety Warning Countermeasures" sub-systems. In the 
"Distraction Mitigation" sub-system, knowledge of driver intent may be used to suppress 
unnecessary non-driving task activity before and during highly demanding driving 
maneuvers. For example, if a system can identify an intention to pass, it might screen 
phone calls while the driver executes the maneuver, negating the source of distraction 
during a perceptually demanding task. In the "Safety Warning Countermeasures" sub-
system, suppressing alerts during certain driving maneuvers may offer the potential of 
reducing a large percentage of nuisance alerts, which could greatly improve driver 
acceptance of the system. There are several scenarios of lane-transition that can lead 
to nuisance alerts for the FCW system, including approaching to pass, turning, or 
changing lanes. A system that can reliably identify intents to pass, change lanes, or turn 
could suppress alerts that precede the predicted maneuver. 
 
Task 8 (Intent) conducted a literature review and summarized the major methods and 
findings in Task 8A literature review report. The report cites previous studies to illustrate 
the potential application of intent detection in both the "Distraction Mitigation" and 
"Safety Warning Countermeasures" sub-systems.  
 
Based on the literature review, a matrix (Table 8.1) was developed that organized the 
potentially diagnostic sources of information as a function of the type of maneuver that is 
intended. The potentially diagnostic sources of information have been organized into five 
categories, including affordances, motive, kinematics, controls, and eye fixations. 
Affordances constrain the possible actions that will be performed by the driver. For example, 
it is unlikely that a driver intends to turn in the immediate future if there is nowhere for the 
driver to turn. The motive category includes information regarding the FCW alert level, the 
range and range-rate to the lead vehicle, and navigation information. These sources of 
information may provide a reason for why the host vehicle will engage in a maneuver. It is 
likely that the driver must have already begun to execute the maneuver for kinematic 
variables to be diagnostic. For example, the yaw-rate may begin to change as a lane-
change maneuver is initiated. Monitoring driver controls, including the gas and brake pedals, 
steering-wheel angle, and turn signals, may provide useful information for the inference of 
intent. For example, a sudden release of the gas pedal might indicate that the driver intends 
to brake or is about to engage in an avoidance maneuver. Fixation data such as mirror 
sample/head turns and forward-scene sampling are likely to be useful for the inference of all 
types of intent.   
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Table 8.1.  Hypothesized diagnostic measures for intent detection  

  Avoidance Pass Turn Merge Change lane Brake 

Exit Ramps    • •   

Cross Streets  • • • •  •Affordances 

Lane location and number  • • • •   

FCW alert level •      •

Range to lead vehicle •  •   •  •

Range-rate to lead vehicle •  •   •  •
Motive 

Navigation information   • • •   

Lead vehicle azimuth •  • • • •   

Heading/Yaw Rate •  • • • •   

Lateral Position •  • • • •   
Kinematics 

Speed / Acceleration •  • • • •  •

Gas pedal •  • • • •  •

Brake pedal •   • • •  •

Steering-wheel angle •  • • • •   
Controls 

Turn signal •  • • • •   

Mirror sampling / head turn •  • • • •   Fixation 
Forward-scene sampling •  • • • •  •

Note—Black circles represent that the measure may potentially be diagnostic for the given type of intent. 
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8.2 THE NATURALISTIC LANE CHANGE DATA SET 

The original plan for this task was to use the data that was collected in Task 3 
(Performance).  During the initial planning phases, we had anticipated that the Task 3 data 
collection activity would be less constrained and more naturalistic. However, in order to 
examine the effects of distraction on driving performance on real roadways, Task 3 
manipulated the levels of distraction in a highly scripted and constrained manner.  The 
demands of safety and of producing high levels of distraction, combined with the short time 
span of Task 3b, dictated an experiment wherein the driver was accompanied with an 
experimenter and events that were manipulated in an orderly and highly-constrained 
fashion.  Therefore the data set that was collected for Task 3 did not represent the 
naturalistic data set that was anticipated. Instead, the data set included few maneuvers on 
relatively homogeneous roadway segments, while drivers were instructed to engage in 
highly-distracting tasks.  The reason that it is so important that the driver be unconstrained in 
this task is that driver behaviors relating to maneuvers such as lane changes are likely to be 
extremely sensitive to the constraints of the experiment.  For example, if these subjects feel 
like their driving performance is being evaluated, they may be more inclined to engage in 
more courteous and rule-following behaviors such as using the turn signal or changing one 
lane at a time.  Lane change behaviors are also likely to be quite sensitive to the complexity 
of the environment and the motive of the driver to arrive at the destination in a timely 
manner. 

The fact that the Task 3 data set included virtually no lane changes or other maneuvers in 
which Task 8 (Intent) might be interested all but ruled out using the Task 3 data set for Task 
8.  During the initial work of Task 8b, however, we anticipated that we might be able to use 
some segments of the Task 3 data set for examining null-intent cases (cases wherein a 
maneuver did not occur).  In order to determine whether an algorithm or measure is 
diagnostic, we need to investigate both false negatives (on cases wherein a maneuver did 
occur) and false positives (on cases wherein a maneuver did not occur).  As it became 
increasingly apparent that the Task 3 data set was highly-constrained and that the periods of 
“normal” driving were just intervals between distraction events, the notion of using the Task 
3 data set for Task 8 analyses was abandoned.  The behaviors during these “null” segments 
are likely to be far less complex than the range of behaviors that occur in less constrained 
driving situations.  

During the initial phases on this task, several naturalistic data sets from prior studies were 
considered.  The first of these studies was the ICC (Intelligent Cruise Control) FOT study.  A 
precursor to the ACAS FOT (Advanced Collision Avoidance Systems Field Operational 
Test) program, the ICC FOT examined the performance of vehicles that were equipped with 
adaptive cruise control systems.  However, because the Task 8 (Intent) literature review 
revealed that eye fixation data were likely to be crucial for a comprehensive intent-inference 
analysis and because the ICC FOT data set did not include any fixation data or facial video 
recordings, using the ICC FOT data set was ruled out.  The ACAS FOT data set was ruled 
out for a similar reason.  Although the ACAS FOT data set did include facial video, this video 
was collected only intermittently (when triggered by certain ACAS-relevant events) or was 
sampled at lower temporal and spatial resolution during intermittent intervals. The quality of 
the video was insufficient for a frame-by-frame analysis of the driver’s precise fixation 
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location.  Whereas the ACAS FOT facial video afforded an intermittent and coarse analysis 
of eyes-forward versus eyes-off-road, it did not afford a more precise analysis of whether the 
driver was gazing at a side-view mirror or speedometer. 

The final data set that was considered was the Naturalistic lane change study, conducted by 
Virginia Tech Transportation Institute (VTTI), with funding provided by the National Highway 
Traffic Safety Administration (NHTSA).  This project was led by Suzanne Lee and involved 
the collection of the naturalistic driving data of sixteen commuters in the southwestern region 
of Virginia spanning October 2000 to July 2001 and was included in the Lee, Olsen, and 
Wierwille (2004) report to NHTSA.  The purpose of this study was to examine the natural 
lane-change behaviors of drivers of passenger vehicles (half of the drivers drove a sedan 
and half drove an SUV).  One major advantage of this data set is that these researchers 
were actually focusing on the lane-change events, and the data set had already been 
reduced accordingly.  Although the purpose of their analyses (understanding lane change 
behavior) were different from the purpose of Task 8 (predicting lane changes), the overlap 
between these two objectives is quite fortuitous and the reduced data set represented a 
manageable set of data that could be analyzed for Task 8 (Intent).  Not only did this data set 
include facial video, but also it had already been reduced (frame-by-frame) to provide the 
fixation locations during the 3-s prior to each lane-change maneuver. 

The drivers of this study were of ages ranging from 20 to 64 (M = 40.8, SD = 12.2), and half 
were male and half were female.  An additional selection criterion was that these drivers 
must commute for more than 25 miles in each direction.  Half of these drivers commuted on 
the I-81 interstate and the other half commuted on either U.S. 460 or U.S. 11 (mostly 2-lane 
in each direction).  These drivers were unaccompanied during data collection and data 
collection occurred during their drives to and from work. 

The complete Lane Change data set included 8667 lane changes performed over 23,949 
miles of data collection.  The 182 tapes of video data and 24 GB of raw sensor data 
represent an effort that is beyond the resources of the Phase I Intent Task.   Although VTTI 
conducted some analyses on the entire set of 8667 lane changes, the in-depth analyses 
focused on a set of 500 lane changes.  The sampling of the full data set down to the in-
depth data set was biased toward lane-changes of higher severity and urgency ratings.  The 
eye fixation analyses were conducted on the reduced set of lane changes.  VTTI analyzed 
the driver’s fixations at 100 msec intervals during the 3-s prior to the initiation of each lane 
change (defined as the point at which the vehicle first moved laterally).  VTTI coded these 
fixations according to the following set of glance locations: 

 

• Center forward (CF) 

• Left forward (LF) 

• Right forward (RF) 

• Rearview mirror (RVM) 
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• Left mirror (LM) 

• Left window (LW) 

• Left blind spot (LBS) 

• Instrument cluster (IC) 

• Right mirror (RM) 

• Right window (RW) 

• Right blind spot (RBS) 

• Other interior (O) 

It became increasingly apparent that the in-depth data set containing the 500 naturalistic 
lane changes was an extremely relevant and useful set of data for determining diagnostic 
measures of driver intent to change lanes.  Through working with our mutual sponsor 
(NHTSA), the SAVE-IT program was able to acquire this data set from VTTI for the purpose 
of subsequent analyses of driver intent inference.  It is important to point out that although 
VTTI collected and reduced this data set, they were in no way involved in this subsequent 
intent-related data analysis for the SAVE-IT program.  The results of these analyses 
contained in this report do not reflect the work or views of VTTI.  

Although this data set is extremely useful for this task and represents the sole focus of 
Phase I activity, there are some limitations of this data set for intent-inference work.  The 
major limitation is that it involves a set of lane changes and does not include a set of events 
where lane changes did not occur.  Because VTTI were focused on understanding the 
nature of lane changes, rather than on developing an algorithm that can predict lane 
changes, their data reductions were focused solely on events where the host vehicle did 
change lanes.  Whereas this data set provides a unique opportunity for evaluating an 
algorithm with respect to true positives (correct prediction of a lane change when one does 
occur) and false negatives (failure to predict a lane change when one does occur), it does 
not afford an analysis of false positives (false prediction of a lane change when one does not 
occur) and true negatives (correct prediction that no lane change will occur when one does 
not occur).  Without the null cases, Phase I was unable to provide validated diagnostic 
algorithms for the detection of driver intent.  Instead Phase I concludes with a set of 
promising candidate measures which appear to precede and coincide with lane changes. 
The validation of these measures and the determination of diagnostic measures must 
therefore reside in Phase II.  The other potential limitation is that the glance measures only 
extend 3 s prior to the initiation of lane change.  At this time, it is not known whether this time 
interval is of sufficient length.  Once again, this limitation suggests that further work is 
required in Phase II. 

The following section (Section 8.3: Intent Detection Framework) will discuss the framework 
that was developed for detecting a driver’s intent to change lane and some general findings 
of the lane-change data analyses.  Section 8.4: Lane Change Maneuver Results) will 
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discuss the results of the analyses with respect to the different types of lane change 
maneuvers 

8.3 INTENT DETECTION FRAMEWORK 

After reviewing the literature in Phase I and during the preliminary analyses of the lane-
change data set, a framework for the intent-inference problem began to emerge.   This 
framework represents a division of different types of information to which a vehicle may have 
access and proposes a way of parsing the intent-inference problem into four separate 
modules.  Although this framework was developed in response to the lane-change data, it is 
likely to be effective for the detection of other types of maneuvers.  This intent-inference 
framework proposes that the problem be divided into the following four modules: 

• Motive 

 The motive module asks the question: “Is there a reason for the driver to 
engage in a specific maneuver?” (e.g., the host vehicle is quickly approaching 
a slower lead vehicle)  

• Affordance 

 The affordance module asks the question: “Does the environment afford the 
specific maneuver to be executed at this time?” (e.g., if there is no left lane 
present, it is unlikely that the driver intends a left lane change) 

• Pre-maneuver Behavior 

 The pre-maneuver behavior module asks the question: “Are there any 
behavioral indicators that suggest that the driver is intending a maneuver?” 
(e.g., frequent glances at the blind spot or side view mirror)  

 This module uses the data sources from Table 8.1 that could include 
kinematics, controls, and fixation. 

• Maneuver Execution 

 The maneuver-execution module asks the question: “Is there evidence that 
the driver has begun to engage in a maneuver?” (e.g., sudden steering wheel 
movement) 

 This module uses the data sources from Table 8.1 that could include 
kinematics, controls, and fixation. 

This section will discuss these intent-inference modules in more detail. 
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8.3.1 Motive 

The motive module focuses entirely on the environment surrounding the host vehicle.  One 
of the most striking results of VTTI’s data analysis was that it revealed that lane changes 
occur for a relatively small set of reasons.  Rather than changing lanes randomly, drivers 
tend to make lane changes in response to specific environmental and goal-oriented 
circumstances.   The exception to this rule is that some lane changes are unintentional (Lee 
et al. revealed that 0.8 percent of their 8667 lane changes were unintended), perhaps 
arising from driver inattention or drowsiness.  Because this task focuses on detecting driver 
intention, unintended lane changes are beyond the scope of this project, and instead will be 
considered by lane departure warning systems (Task 9: Safety Warning Countermeasures).  
The VTTI data analyses further revealed that a relatively small set of motives is able to 
account for a large proportion of lane changes.   

 

Table 8.2.  Motives for Lane-changes and turn-signal usage 

Motive for Lane-Change 
Maneuver 

Direction 
of Lane-
Change 

Percentage* of 
total Lane 
Changes 

Cumulative 
Percentage* 

Number of 
events in 
data set** 

Probability 
of using 

turn-signal 
Slow Lead Vehicle Left 34 34 267 0.46 

Return Right 17 52 35 0.11 
Preparation to Exit Right 17 69 50 0.48 

Enter Highway Left 6 76 23 0.59 
Preparation to Exit Left 6 82 22 0.68 

Tailgating Rear Veh. Right 4 86 15 0.40 
Slow Lead Vehicle Right 3 89 27 0.34 
Merging Lead Veh. Left 3 92 17 0.94 
Entry to Highway Right 1 93 6 0.67 

Lane Drop Left 1 94 9 0.22 
Lane Drop Right 1 95 6 0.50 

* The percentages and cumulative percentages are based on VTTI’s analysis of the entire set of 8667 lane 
changes. 
** The number of events in data set refers to the number of events in the 500 in-depth data set that Task 8 
(Intent) has available for analysis. 

Table 8.2 displays the results of VTTI’s analyses of the different types of lane changes.  The 
cumulative percentage of the 8667 lane changes reveals that 92 percent of lane changes 
are motivated by either a slow lead vehicle, a return to an original lane, preparation to exit, 
entry to a highway, a tailgating rear vehicle, or the presence of a merging lead vehicle.  The 
major insight that can be gained from this analysis is that a great deal of information can be 
gained about whether a driver is about to engage in a lane-change maneuver just by 
examining the environment surrounding the host vehicle.  Note also that the usage of turn 
signals varies as a function of the different motivating factors.  For example, drivers used the 
turn signal on average 11 percent of the time during a return to the original lane compared 
with 94 percent of the time during a left lane change motivated by an inbound merging lead 
vehicle.  This suggests that the turn signal alone is an extremely reliable indicator of lane 
changes that are motivated by a merging lead vehicle.  No further resources need be 
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allocated to this particular type of lane change.  However, the turn signal is not a reliable 
indicator of the remaining types of lane changes. 

The types of sensors that could provide useful motive information vary across the different 
types of lane changes.  For the detection of lane changes that are motivated by slow lead 
vehicles (representing 37 percent of the total), sensors that can detect the range and range-
rate of the lead vehicle (e.g., laser or radar) would be useful. For extreme cases of a host 
vehicle being tailgated, a rear looking sensor for the purposes of back-up aid could 
potentially be useful, however, on most vehicles, the range of a back-up aid or park assist 
sensor would likely be too short for all but the most extreme cases of tailgating.  For the 
motives that involve a change in the state of the roadway (e.g., entry to a highway or lane 
drop), a GPS/map-matching system could provide useful data.  If the presence of a lane-
drop can be detected, then this would provide an almost perfect indication that a lane 
change is about to occur.  The motive of preparation to exit could be detected by a 
combination of a GPS/map-matching system and a system that provides some indication of 
the route that the driver is following.  Navigation systems (if present) or an algorithm that 
analyzes the prior history of the driver’s maneuvers (e.g., if a driver usually has exited at a 
given exit, this could be a good predictor of a motive for preparation to exit) could potentially 
provide route information.  A system that has recently detected a left lane change in 
combination with data that suggests that the right lane is now unobstructed could provide 
evidence that a motive to return to the original lane exists.  

In some circumstances, motive information alone may be a sufficient predictor of lane 
changes (e.g., a lane drop), however, in other cases (e.g., return to original lane) the motive 
module should be combined with information from the other modules for a more reliable 
intent-inference algorithm. 

 

8.3.2 Affordance 

Gibson (1979/1986) invented the term “affordance” from the verb “to afford”, defining 
affordances as “what it [the environment] offers animals, what it provides or furnishes, either 
for good or ill.”  As Takahashi (2000) demonstrated in his studies of intent detection, 
affordances constrain the possible actions that will be performed by the driver and thus may 
provide a useful indication of whether a maneuver is likely to occur.  In the case of lane-
changes, affordances can provide useful information regarding the likelihood of a lane 
change maneuver because in many situations a lane change is not possible.  For example, 
the motive module may detect that the host vehicle is rapidly approaching a lead vehicle and 
therefore arrive at the conclusion that the driver has motive to perform a left lane change to 
avoid a lead vehicle.  However, if the left lane is completely obstructed by a constant flow of 
traffic, or if no left lane currently exists (e.g., in construction) then the affordance module may 
override the information of the motive module. 

In some circumstances the line dividing affordances from motives may appear to be quite 
narrow.  For example, an upcoming exit may provide both a motive to change lanes and an 
opportunity/affordance to exit the highway.  Another example is that an unobstructed right 
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lane provides the motive to engage in a return to the original lane and provides an 
opportunity to do so.  However, to clarify the distinct existence of these modules, the 
affordance module assesses whether a left or right lane change is physically possible or 
legally permissible in the immediate future.  Whether this left or right lane change is likely to 
benefit the driver in the near future is not relevant to the affordance module and resides 
solely within the motive module. 

The affordance module could benefit greatly from a GPS/map-matching system that can 
inform this module about whether a target lane exists into which to change.  Alternatively, 
this information could be provided by a vision system that processes the images of a 
forward-looking camera (e.g., a lane tracking system).  If a lane is present, the next question 
addresses whether or not the lane is obstructed by another vehicle.  A side-obstacle 
detection system could provide this information in most cases (when the approaching 
vehicle is either closing in slowly not at all).  If such a sensor is not present, then a temporal 
extrapolation of the data from a forward-looking radar may be able to predict that a vehicle is 
currently occupying the space that the intended maneuver would otherwise move the host 
vehicle toward.  For example, the range rate of vehicle that is being passed (measured by 
the forward-looking radar or laser sensor) could be extrapolated for several seconds after it 
is beyond the detection angle (azimuth) of the sensor to predict when it has been passed. 

The affordance module in isolation is unlikely to reliably infer lane-change intentions.  To 
know that a lane change is possible is not the same as knowing that a lane change is about 
to occur.  Lee et al. (2002) discovered that lane changes only occur once every 2.76 miles in 
their data set.  Therefore, there is likely to be a great deal of mileage during which a lane 
change is possible but does not occur. However, to know that a lane change is impossible is 
almost equivalent to knowing that a intentional lane change is not about to occur (unless the 
driver is not aware that the lane change is not possible).  Therefore the affordance module 
may provide a powerful means of ruling out the possibility of a lane change in the near future 
and thus provide additional protection against false positives. 

 

8.3.3 Pre-maneuver Behaviors 

Unlike the previous two modules (motive and affordance), the pre-maneuver behaviors 
module analyzes the behavior of the driver-vehicle system to determine whether a lane 
change is likely.  This module is likely to rely most heavily on glance location and transition 
measures but some control variables (e.g., turn signal) are also likely to be useful.  Unlike 
the execution-indicator module, the pre-maneuver behaviors module focuses solely on 
behaviors that occur prior to the initiation of the lane-change event (which Lee et al. defined 
as the point at which the vehicle first begins to move laterally).   

The most obvious indicator of driver intention is the turn signal.  Whereas this may provide a 
reliable indication of lane-change intent during some types of maneuvers (e.g., merging lead 
vehicle), for most maneuvers it does not provide a satisfactory basis for the prediction of 
lane changes.  However, the turn signal may be used in conjunction with other types of 
measures to provide a reliable indicator of driver intent.  Because the driver must collect 
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information about whether a lane change will be beneficial to their driving task (motive) and 
can be conducted safely or legally (affordance), it is reasonable to expect that the focus of 
the drivers visual attention will vary in characteristic and potentially diagnostic patterns prior 
to the execution of a lane change. The literature review portion of this task revealed several 
studies in which such eye-fixation or transition behaviors were observed (e.g., Mourant and 
Donahue, 1974).  Lee et al. (2004) also revealed that the pattern of fixations varies 
depending on the type of lane change, including both the left versus right distinction and the 
motive distinctions that were discussed previously in this section.  For this reason, the 
glance transitions will be discussed in more detail in the next section (8.4: Specific Lane 
Change Results) within the different types of lane changes.   

Table 8.3 displays the results of a glance location analysis as a function of lane change 
motive and direction.   The number of cases in which the driver glanced at the specified 
locations and the amount of time (in msec) that the driver spent glancing at each location 
were tabulated for slow lead vehicle left and right, preparation to exit left and right, tailgating 
rear vehicle right, and return to original lane right lane changes.  The gray highlights in this 
table represent glance locations that appear to be relevant for acquiring information that is 
pertinent to the lane change. 

In the absence of a null data set in which no lane changes were made it is impossible to 
determine whether these patterns of fixations will be diagnostic of particular maneuvers. 
However, we can superficially compare these data with those of Mourant and Donahue 
(1974) who also collected data on real roadways, consistent with their own comparison.  
From this comparison it is evident that the percentage of time spent sampling the two 
relevant mirrors (see “total of 2 mirrors” in Table 8.3) in the Lee et al. data set (3-s prior to 
initiating the maneuver) is larger than that of Mourant and Donahue’s null data set, where 
the average was 5 percent (assuming an average speed of 45 mph).  The percentage of 
time sampling the two relevant mirrors ranges from 15 (Slow lead vehicle right) to 32 percent 
(Tailgating rear vehicle right).   Carter and Laya (1998) also have stated (based on both 
driving simulator and on-road studies) that during normal lane maintenance, drivers typically 
spend 70 percent of the time looking toward the focus of expansion and 15 percent of the 
time looking toward the instrument cluster.  The 85 percent of glances during normal lane 
maintenance directed toward either the center forward (focus of expansion) and instrument 
cluster suggested by their work can be compared to that of the six types of lane changes 
displayed in Table 8.3.  In this table, it is evident that the percentage of time spent looking at 
either the center forward (CF) or instrument cluster (IC) is far less during the 3 s prior to 
these lane changes, ranging from 42 (Preparation to exit left) to 67 (Preparation to exit right) 
percent.  This large reduction in time spent looking at either the center forward (CF) or 
instrument cluster (IC) is consistent with Carter and Laya’s (1998) analyses. 
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Table 8.3. Glance Location Counts and Times as a function of Lane Change Motive and Direction 
During the 3-s Prior to Lane Change Initiation 

Note: The first row represents the glance locations

 
IC O LBS LW LM LF CF RVM RF RM RW RBS

Total of 2 
mirrors1

Total of gray 
regions2

IC or
CF

Total: 267 52 4 69 89 135 76 262 138 14 6 1  215 240 262
% of Total 19  26 33 51 28 98 52 5    81 90 98
average 75  93 175 306 154 1490 289 22    594 862 1564

% of Total 2  3 6 10 5 50 10 1    20 29 52
Total: 22 4  5 9 19 5 21 7 2 3   22 22 21

% of Total 18  23 41 86 23 95 32 9 14   100 100 95
average 45  95 191 686 77 1214 136 100 50   823 1109 1259

% of Total 2  3 6 23 3 40 5 3 2   27 37 42
Total: 27 1      26 15 6 5 2 3 15 18 26

% of Total       96 56 22 19 7 11 56 67 96
average       1922 370 219 70 56 74 441 570 1922

% of Total       64 12 7 2 2 2 15 19 64
Total: 50 4  1 1 1 4 50 23 10 9 4 7 29 31 50

% of Total 8     8 100 46 20 18 8 14 58 62 100
average 48     72 1972 350 76 94 38 68 444 550 2020

% of Total 2     2 66 12 3 3 1 2 15 18 67
Total: 35 4 2  1 2 7 35 25 6 8 5  27 29 35

% of Total 11 6   6 20 100 71 17 23 14  77 83 100
average 49 31   31 114 1797 380 63 109 86  489 411 1846

% of Total 2 1   1 4 60 13 2 4 3 16 14 62
Total: 15 1 1   2 2 15 15 3 2 2 2 15 15 15

% of Total     13 13 100 100 20 13 13 13 100 100 100
average     27 100 1307 920 107 40 53 80 960 1093 1307

% of Total     1 3 44 31 4 1 2 3 32 36 44

Time
(msec)

Cases

Cases

Time
(msec)

Time
(msec)

Cases

Time
(msec)

Cases

Cases

Time
(msec)

Slow Lead
Vehicle

Left

Preparation
to exit
Left

Slow Lead
Vehicle
Right

Preparation
to exit
Right

Return to
Original

Lane
Right

Tailgating
Rear 

Vehicle
Right

Time
(msec)

Cases

 (using the abbreviations on pages 8.14 – 8.15).  Zeroes and 

s the number of cases in which the driver glances at either the 

abeled “Total of gray regions” counts the number of cases in which the driver glances at one of 

control parameters could be used to help 

compared with “Enter lane changes” at an average speed of 47 mph. 

negligible numbers (e.g., when 1 is in the numerator) have been omitted to provide focus on the relevant areas 
of the table.  In the event that there is more than one glance at the region, the case is only counted once so the 
number of cases refers to those in which the driver glanced at the region at least once. The rows that are 
labeled “time (msec)” reveal the average amount of the 3000-msec window prior to the event initiation that the 
driver spends glancing at the specified location. 
1. The column labeled “Total of 2 mirrors” count
rear view mirror or the mirror pertaining to the direction of the lane change at least once.  This is not equivalent 
to the addition of the RVM and relevant mirror cells because cases in which the driver looks at both are only 
counted once. 
2. The column l
the regions highlighted in gray (a region that is relevant to this particular type of lane change) at least once. This 
is not equivalent to the addition of the gray cells because cases in which the driver looks at more than one 
region are only counted once. 
 
 
 This task also examined whether kinematic and 
infer lane-change intent prior to execution.  A simple analysis, comparing left lane changes 
to right lane changes, revealed that there were no reliable indicators (other than the turn-
signal) that a driver is about to change lanes.  Unless kinematic and control variables vary 
between lane changes as a whole (independent of direction or motive) and non-lane 
changes, which could not be examined in this data set, this analysis suggests that there are 
no reliable kinematic or control measures that can indicate that a lane change is about to 
occur.  This conclusion is consistent with the analyses of Lee et al. (2004) on the same data 
set.  However, Lee et al. did observe differences in the speeds between the different types 
of lane changes, e.g., “Tailgating lane changes” occurred at an average speed of 67 mph 
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8.3.4 Execution Indicators 

Unlike the other three modules that attempt to detect a lane change before it actually occurs, 
lane change as it is occurring.   Because these sources of 

information are indicators of the maneuver rather than the intention to engage in the 

nge in steering data.  These data are quite noisy, possibly 
due to road crown, road curvature, road irregularities, wind, or driver failure to 

After a ious 
way to diagnose left lane changes from right lane changes using these parameters.  This 
finding is in stark contrast to the work of Salvucci and colleagues (e.g., Salvucci, Boer, & Liu, 

this module attempts to detect a 

maneuver, this module is somewhat beyond the scope of Task 8 (Intent).  The problem of 
detecting a maneuver as it occurs is actually the same problem that manufacturers of lane 
tracking systems focus on.  These systems use a forward-looking camera and image 
processing algorithms to detect the driver’s position in the lane.  Companies such as Mobile 
Eye and Iteris already have a product on the market that serves this function.  The outcome 
of SAVE-IT Tasks 1 (Scenario Identification) and 9 (Safety Warning Countermeasures) 
indicate that it is likely that the SAVE-IT vehicles are likely to include a lane departure 
warning system.  There are many reasons to expect that image processing is likely to offer a 
more effective alternative to detecting lane change executions than kinematic and control 
variables.  Based on Lee et al.’s (2004) analysis of their lane change data set, they reported 
that much of the kinematic or control data such as steering wheel angle and lateral 
acceleration was not diagnostic of a lane change even during the execution of the 
maneuver, stating (p. 79): 

An analysis of numerous cases revealed that generally there is no obvious 
pattern for lane cha

maintain center lane position… In most cases, such as that shown in Figure 
4.3, the entire trace is very noisy with no discernable pattern… Using steering 
traces as indicators for lane changes could be very misleading and result in 
unacceptably high numbers of false alarms for a lane change CAS…As was 
true for the steering data, analysis of numerous cases revealed that most of 
the time there is no “telltale” pattern for lane changes in the lateral 
acceleration data. 

 cursory analysis of their data set of maneuver executions, there was even no obv

2001; Salvucci & Liu, 2002; Salvucci, 2004), who demonstrated that kinematic and control 
variables could support the reliable detection of a maneuver shortly after it was begun.  
Perhaps the most likely explanation for this discrepancy is that the work of Salvucci and 
colleagues was carried out in a driving simulator.  Whereas the driving simulator may be a 
useful tool for studying many phenomena, other phenomena may be less amenable to the 
driving simulator. In the case of driver intention, intricate “normal-driving” behaviors are the 
focus of the research and the driver’s interaction with the controls and dynamics of the 
vehicle and environment are paramount. It is therefore crucial that the data-collection 
environment is as close to that of the true phenomena as possible.  This problem may be 
further amplified in Salvucci & Liu (2002) by researchers asking participants to state when 
they were about to change lanes, which could make drivers self-conscious and perform 
exaggerated, artificial, and potentially unrealistic behaviors.  This places participants in the 
difficult psychological position of “driving how you normally would” where they must attempt 
to recollect how they would normally behave in a similar yet real situation.  Therefore, it is 
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more likely that the naturalistic data set of Lee et al. (2004) is a more accurate reflection of 
reality than the data that Salvucci and colleagues based their algorithms. 

Given that it is likely that lane tracking systems will provide superior detection of lane change 
executions than an algorithm based on kinematic and control variables, maneuver execution 
variables are defined as being outside the scope of this task.  The objective of this task is 
therefore the challenging problem of inferring driver intentions and thereby predicting 
maneuvers before they actually occur.  To the extent that the detection of lane position is 
useful in the SAVE-IT program, vision-based lane-tracking systems will be utilized to provide 
this source of information. 
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8.4 SPECIFIC LANE CHANGE RESULTS 

Lee et al.’s (2004) analysis of the naturalistic lane change data revealed that a relatively 
small number of motives can account for a large proportion of the total lane changes.  
Because the dynamics of lane changes differ based on both the direction of the lane change 
and on the motive for changing lanes, the eye glance analyses of Task 8 (Intent) were 
conducted separately for each type of lane change.  Several types of lane changes were 
selected for this analysis based on the prevalence of the lane change type, the number of 
cases in the data set that were available, and the inability to predict the lane change using 
simple criteria.  Highway Entry and Lane Drop lane changes were not included because 
they account for a relatively small proportion of the total lane changes (combined 9 percent) 
and are likely to be best predicted by knowing where the vehicle is located.  A GPS/map-
matching system with sufficient data should be able to predict these types of lane changes 
with great success.  The other type of lane change that was not included in the analyses 
was the lane changes in response to a merging lead vehicle because the lane change data 
set demonstrated that the turn signal is a reliable predictor of these events (94 percent of 
these lane changes were signaled).  The selected set of lane changes account for 83 
percent of the total 8667 lane changes and include slow lead vehicle left and right, 
preparation to exit left and right, tailgating rear vehicle right, and return right lane changes.  
This section will present the results of the data analyses for these specific types of lane 
changes. 

 

8.4.1 Slow Lead Vehicle  

The slow lead vehicle lane changes are motivated by the host vehicle approaching a slower 
lead vehicle.  As the host vehicle closes in on the lead vehicle, the driver is faced with a 
decision of either slowing down and thus being constrained by the speed of the lead vehicle 
or maneuvering around the lead vehicle.  When choosing the latter option, the driver 
engages in a slow lead vehicle change.  Lane changes that are motivated by slow lead 
vehicles account for over 37 percent of the lane changes collected in the naturalistic lane 
change study and constitute the single largest category. 

In order to quantify this motive based on the naturalistic lane change data, Task 8 (Intent) 
analyzed the minimum time-to-contact (s) and minimum time-headway (s) during the 3-s 
prior to when the maneuvers were initiated.  Figure 8.1 displays the minimum time-to-
contact (s) as a function of minimum time-headway (s) during the 3-s prior to when the 
maneuvers were initiated for the slow lead vehicle lane changes to the left.   The horizontal 
line represents a time-to-contact criteria of 15 s and the vertical line represents a time-
headway criteria of 1 s.  The combined area of these two criteria bound 79% of the 265 
cases of left slow lead vehicle lane changes.  These data appear to indicate that drivers tend 
to use both criteria depending on the circumstance.  In short, drivers are motivated to 
change lanes either because the lead vehicle is too close (time-headway) OR because the 
host vehicle is closing on the lead vehicle too rapidly (time-to-collision). 
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Figure 8.1. Minimum time-to-contact (s) as a function of minimum time-headway (s) during the 3-s prior to when 
the maneuvers were initiated for the slow lead vehicle lane changes to the left. 
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Figure 8.2. Minimum time-to-contact (s) as a function of minimum time-headway (s) during the 3-s prior to when 
the maneuvers were initiated for the slow lead vehicle lane changes to the right. 

 8-25



Figure 8.2 displays the minimum time-to-contact (s) as a function of minimum time-headway 
(s) during the 3-s prior to when the maneuvers were initiated for the slow lead vehicle lane 
changes to the right.   The horizontal line represents a time-to-contact criterion of 10 s and 
the vertical line represents a time-headway criterion of 0.75 s.  The combined area of these 
two criteria bound 86% of the 27 cases of left slow lead vehicle lane changes.  

One important consideration of this analysis is that the sample of events that were analyzed 
are not representative of lane changes as a whole but instead the sample of 500 lane 
changes is skewed (by the VTTI researchers) toward those of higher severity and urgency 
ratings.  However, the more urgent and severe lane changes are more likely to be important 
for adaptive systems.  For example, it is only the more severe slow lead vehicle lane 
changes that would lead to FCW nuisance alerts. The nature of this sample is likely to be an 
important consideration for generalizing these data to other lane changes.  For this reason, 
although the general strategy for deciding when to change lanes may be valid, the actual 
time-to-contact and time-headway values presented in this analysis should be treated with 
skepticism. 

Another useful source of information for determining whether there exists a motive for 
changing lanes is to examine the radar data of vehicles in the destination lane also.  For a 
slow lead vehicle to motivate a lane change, the destination lane must be preferable to the 
current lane.  Therefore, the system should also analyze the time-to-contact and time-
headway of the destination lane and assess whether the destination lane is likely to be 
preferable to the current lane.   

Section 8.3.2 discussed how affordance information could be used to rule out whether a 
lane change is likely.  In the case of lane changes motivated by a slow lead vehicle, the 
most pertinent information regarding the affordance of the lane change is whether a lane is 
present and whether the lane is immediately available.  A GPS/map-matching system or a 
forward-looking vision system could provide information about whether the lane exists and a 
side-obstacle detection system could inform the system about whether a lane change is 
immediately possible.  

Because turn signals are only used during 46 and 34 percent of left and right lane changes 
motivated by slow lead vehicles, a reliable intent-inference system must move beyond just 
using the turn signal.  Task 8 (Intent) analyzed the first order Markov matrices for the left and 
right lane changes, containing the transitions between different glance locations.  Table 8.4 
tabulates the percentage of cases (out of the 265 slow lead vehicle left lane changes) in 
which the driver transitioned between the two glance locations at least once during the 3 s 
prior to the maneuver execution.  This table demonstrates that glance transitions tend to be 
clustered within the light gray region and there are relatively few exceptions to this.  For 
example, in 113 cases out of 265, drivers transition their focus from the center forward (CF) 
region to the rear view mirror (RVM).  In 91 percent of the 265 cases, the driver transitioned 
between the regions highlighted in gray at least once during the 3 s prior to the execution of 
a slow lead vehicle lane change to the left.  In 84 percent of the 265 cases, these transitions 
occurred at least twice or more. 
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Table 8.4. Percentage of Glance Location Transitions During the 3 s Before Execution of a Slow Lead 
Vehicle Lane Change to the Left 

Note: The cells represent the perce

 LBS LW LM LF CF RVM IC
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able 8.5. Percentage of Glance Location Transitions During the 3 s Before Execution of a Slow Lead 

Not

location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 
less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), left forward (LF), left mirror (LM), left window (LW), and left 
blind spot (LBS) regions and indicates transitions likely to be relevant to this maneuver. 

T
Vehicle Lane Change to the Right 

om one 

 CF RVM RF RM RBS
CF  52 11 11 11
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e: The cells represent the percentage of cases (out of 27) in which the driver transitions glances fr
location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 
less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), right forward (RF), right mirror (RM), and right blind spot 
(RBS) regions and indicates transitions likely to be relevant to this maneuver. 
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Table 8.5 tabulates the percentage of cases (out of the 27) in which the driver transitioned 
between the two glance locations at least once during the 3 s prior to the maneuver 
execution for the slow lead vehicle lane changes to the right.  This table reveals that the 
majority of glance location transitions tend to occur between the center forward (CF) region 
and the rear view mirror (RVM) in both directions.  In 81 percent of the 27 cases, the driver 
transitioned between the regions highlighted in light gray at least once during the 3 s prior to 
the execution of a slow lead vehicle lane changes to the right.  In 63 percent of the 27 cases, 
these transitions occurred at least twice or more.  Although this analysis is based on 
relatively few cases (27), it suggests that drivers rely quite heavily on the rear view mirror 
during lane changes to the right.  The less frequent glances to and from the right mirror 
(RM), right blindspot (RBS), and right window (RW) are not surprising given that these 
glances require more effort and the driver is normally traveling faster than the traffic in the 
right hand lane, so is usually rely on glances to right forward (RF) and center forward (CF) 
regions to know when the right lane is available. 

 

8.4.2 Preparation to Exit 

The preparation to exit lane changes are motivated by the driver needing to move into the 
appropriate lane for an upcoming highway exit event.  For example, if the exit lane is on the 
right, the host vehicle will need to make a right lane change if it is currently located in the left 
lane.  Lane changes that are motivated by preparation to exit account for approximately 23 
percent of the lane changes collected in the naturalistic lane change study. 

In order for a system to detect that the preparation-to-exit motive exists, the system must 
determine that (1) there is an upcoming exit, (2) the host vehicle is likely to be taking this 
exit, and (3) the host vehicle is not yet in the exit lane.  To determine that there is an 
upcoming exit, the most obvious method for solving this problem is to use a GPS/map-
matching system.  If such a system is not present, a forward-looking vision processor that is 
capable of detecting upcoming exits may be a possible alternative.  To detect that the host 
vehicle is likely to use the upcoming exit, the system can either rely on previous history (e.g., 
the driver may traverse the same exit every day during a commute to work) or on route 
information if it is programmed into an available navigation system.  Finally to detect that 
there is a disparity between the exit lane and the current lane that the host vehicle occupies, 
the system would require a system that knows which lane is associated with the upcoming 
exit (probably the same system that identified that an upcoming exit exists) and a forward-
looking vision processor that can determine which lane the host vehicle currently occupies.   

Like the slow lead vehicle lane changes, the most critical affordance is the existence and 
availability of a destination lane.  Of the lane changes that are motivated by exit preparation, 
68 and 46 percent are signaled with a turn signal for left and right lane changes respectively.  
Therefore there is likely to be sufficient room for improvement over an intent-inference 
system that solely relies on a turn signal.  To examine additional pre-maneuver behaviors 
measures, Task 8 (Intent) analyzed the first order Markov matrices for the left and right lane 
changes, containing the transitions between different glance locations.  Table 8.6 tabulates 
the percentage of cases (out of the 22 exit preparation left lane changes) in which the driver 
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transitioned between the two glance locations at least once during the 3 s prior to the 
maneuver execution.  This table reveals that in this relatively small sample (22) glance 
transitions tend to be clustered within the light gray region.  In all 22 cases, the driver 
transitioned between the regions highlighted in gray at least once during the 3 s prior to the 
execution of a slow lead vehicle lane change to the left.  In 91 percent of the 22 cases, these 
transitions occurred at least twice or more. 

 
Table 8.6. Percentage of Glance Location Transitions During the 3 s Before Execution of an Exit 
Preparation Lane Change to the Left 

Note: The cells represent the percentag

 LBS LW LM LF CF RVM IC
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able 8.7 tabulates the percentage of cases (out of 50 exit preparation right lane changes) 

location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 
less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), left forward (LF), left mirror (LM), left window (LW), and left 
blind spot (LBS) regions and indicates transitions likely to be relevant to this maneuver. 

T
in which the driver transitioned between the two glance locations at least once during the 3 s 
prior to the maneuver execution.  Again, the majority of glance transitions tend to occur 
between the locations highlighted in light gray.  In 74 percent of the 50 cases, the driver 
transitioned between the regions highlighted in gray at least once during the 3 s prior to the 
execution of an exit preparation changes to the right.  In 50 of the 50 cases, these transitions 
occurred at least twice or more.   
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Table 8.7. Percentage of Glance Location Transitions During the 3 s Before Execution of an Exit 
Preparation Lane Change to the Right 

 LF IC CF RVM RF RM RW RBS
LF   6  
IC   8  
CF 6 6  42 16 10  10

RVM   28      
RF   12  6  
RM   10   
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RBS     
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Note: The cells represent the percentage of cases (out of 50) in which the driver transitions glances from one 
location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 
less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), right forward (RF), right mirror (RM), right window, and right 
blind spot (RBS) regions and indicates transitions likely to be relevant to this maneuver. 

 

8.4.3 Return to Original Lane: Right 

The return to original lane changes to the right are motivated by the driver wanting to move 
back into the preferred lane after the maneuver in the left lane is complete.  Because the left 
lane is generally considered to exist for the purpose of passing slower traffic, many drivers 
prefer to occupy the right lane by default and only use the left lane when a need to pass 
arises.  Therefore rather than representing a motive per se, it instead represents a lack of 
motive to continue in the left lane.  The return to right lane events account for approximately 
17 percent of the lane changes collected in the naturalistic lane change study and comprise 
the second largest category of lane changes. 

Because this type of lane change is a return to the right lane, by definition these lane 
changes must occur after a left lane change.  Task 8 (Intent) analyzed the data set to 
investigate how much time occurred between the left lane change and the subsequent 
return to the right lane.  Because 79 of the 265 slow lead vehicle left lane changes included 
return lane changes back into the right lane, this analysis was conducted on the slow lead 
vehicle lane changes with returns.  Figure 8.3 displays the time intervals between the 
completion of the left lane change (slow lead vehicle event) and the initial execution of the 
return lane change to the right as a function of the percentile. The mean interval between 
changes was 1.78 s with a standard deviation of 0.97 s.  The 95th percentile for these 
intervals is 3.43 s.  This relatively short time interval between lane changes may suggest 
that a simple timer could be used to anticipate the motive to return to the right lane.  
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However, one limitation to this analysis is that the return lane changes that were analyzed 
may have been a biased sample that was more likely to include return lane changes if they 
occurred shortly after the initial lane change.  As previously mentioned, the sample of 500 
lane changes as a whole were also biased toward more urgent and severe lane changes.  
This is reflected in the relatively low mean value of 1.78 s, which suggests that the host 
vehicle was traveling significantly faster than the vehicle that was being passed on the right.  
However, note that host vehicle may have already gained significant ground on the lead 
vehicle prior to the completion of the left lane change. 
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Figure 8.3. The Percentile of time intervals between the completion of the left lane change (slow lead vehicle 
event) and the initial execution of the return lane change to the right. 

A more sophisticated strategy for detecting the motive to return to the right lane is to 
examine the traffic in the right lane.  Beyond the immediate availability of the right lane that 
determines whether the lane change is possible (affordance), the proximity and rate of 
closure to the lead vehicles in the right lane may indicate whether the driver will perceive the 
lane change as being desirable.  As discussed in Section 8.3.2 (Affordances), the 
affordance module could use either a blind-spot sensor or make projections based on the 
forward-looking sensor to predict whether the right lane is clear of traffic.  Similar criteria as 
those used in the slow lead vehicle lane change category (e.g., if the lead vehicle in the right 
lane is too close or traveling more slowly) could also be extended to assess when it is likely 
that the driver may desire to return to the default lane.   

Table 8.8 tabulates the percentage of cases (out of the 35 return lane changes) in which the 
driver transitioned between the two glance locations at least once during the 3 s prior to the 
maneuver execution.  The majority of glance transitions tend to occur between the locations 
highlighted in light gray, however in this case more exceptions are evident, suggesting that 
the left forward (LF) and left mirror (LM) regions may provide useful information for some 
drivers.  The most common glance transitions are those between the center forward (CF) 
and rear view mirror (RVM) regions.  In 89 percent of the 35 cases, the driver transitioned 
between the regions highlighted in gray at least once during the 3 s prior to the execution of 
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the return lane changes to the right.  In 63 percent of the 35 cases, these transitions 
occurred at least twice or more.   

 

Table 8.8. Percentage of Glance Location Transitions During the 3 s Before Execution of a Return Lane 
Change to the Right 

Note: The cells represen
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8.4.4 Tailgating Rear Vehicle: Right 

The tailgating rear vehicle lane changes to the right are motivated by a vehicle behind the 

Table 8.9 tabulates the percentage of tailgating rear vehicle changes in which the driver 

location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 
less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), right forward (RF), right mirror (RM), right window, and right 
blind spot (RBS) regions and indicates transitions likely to be relevant to this maneuver. 

host vehicle applying pressure to change lanes by tailgating the host vehicle.  These events 
account for approximately 4 percent of the lane changes collected in the naturalistic lane 
change study.  As mentioned in Section 8.3.1, it may be possible to detect a tailgating lead 
vehicle with a rear-looking detection system when the tailgating is extreme.  Delphi’s back-
up aid radar is capable of looking back 5 m, which could theoretically detect a vehicle that is 
tailgating at a time-headway of 0.25 s when both vehicles are traveling at 45 mph.  The 
other major indicator of motive is that the host vehicle is in the left lane, which could 
potentially be detected by a forward-looking vision processor.  Like the other types of lane 
changes that have been discussed in this section, the most relevant affordance is the 
existence and availability of the destination (right) lane. 

transitioned between the two glance locations at least once during the 3 s prior to the 
maneuver execution.  Unfortunately, there were only 15 cases of these lane changes and so 
this table is not as informative as the others in this section.  Not surprisingly, the driver 
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transitions glances frequently to and from the rear view mirror.  In 80 percent of the 15 
cases, the driver transitioned specifically from the center forward region (CF) to the rear view 
mirror (RVM) region.  Glances other than those between these two regions were relatively 
rare.  In Section 8.3.3, Table 8.3 also indicated that in all cases, drivers spent time glancing 
at both the center forward (CF) region and the rear view mirror (RVM) region.  On average, 
drivers spent almost one second of the three seconds prior to the maneuver glancing at the 
rear view mirror (RVM) region. 

 

e 8.9. Percentage of Glance Location Transitions During the 3 s Before Execution of a Tailgating Tabl
Rear Vehicle Lane Change to the Right 

 LF CF RVM RF RM RW RBS
LF   
CF 13  80 13  

RVM 53  
RF        
RM        
RW   
RBS   

Glances To

G
la

nc
es

 F
ro

m

Note: The cells represent the percentage of cases (out of 15) in which the driver transitions glances from one 
location to the other at least once.  Negligible values (where the numerator is zero or one or the percentage is 

.4.5 Other Lane Changes 

 Table 8.2 that were not 
analyzed in depth for Task 8 (Intent).  Those motives included enter highway (left and right), 

ask 8 (Intent) analysis is that these 
types of lane changes are likely to be best predicted based on information other than glance 

less than 5) have been removed to provide focus to the table. The light gray region includes transitions from and 
to the center forward (CF), rear view mirror (RVM), right forward (RF), right mirror (RM), right window, and right 
blind spot (RBS) regions and indicates transitions likely to be relevant to this maneuver. 

 

8

There are three types of lane change motives that appeared in

merging lead vehicle (left), and lane drop (left and right).  These types of lane changes 
account for a combined total of 12 percent of the 8667 lane changes that were observed in 
the VTTI study, however, there was insufficient data in the in-depth data set for a reasonable 
analysis.  There were 23 and 6 samples of the left and right enter highway lane changes 
respectively, 17 samples of the merging lead vehicle lane changes, and 9 and 6 samples of 
the left and right lane drop lane changes respectively.   

The other reason for excluding these cases from the T
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location patterns.  For example, because the data revealed that drivers use the turn signal 
94 percent of the time when making a “merging lead vehicle lane change” to the left, an 
intent algorithm need not examine any other source of information for predicting these lane 
changes.  It is unlikely that an intent algorithm could improve upon such a reliable indicator.  
Both the enter highway and lane drop lane changes are likely to be best predicted by 
examining the environment rather than examining the driver.  If a GPS/map-matching or 
forward-looking vision processor system reveals that the lane that the host vehicle is 
currently occupying will soon cease to exist, the probability that the driver will make a lane 
change is near 1.  Likewise, the highway entry situation represents a special case of a lane 
drop lane change when the entry lane will soon cease to exist.  The unifying feature of these 
lane changes is that it is most likely that they can be predicted by focusing on a single 
source of information (the turn signal for merging lead vehicle changes and the lane 
characteristics for highway entry and lane drop lane changes) rather than on a fusion of 
different sources of information. 
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8.5 CONCLUSIONS 

The VTTI naturalistic lane change study was extremely informative about the nature of 
lane changes.  The categorization of different types of motives for changing lanes not 
only influenced the specific analyses for diagnostic measures but also contributed to the 
overall framework for detecting driver intent.  A framework that focuses on motive, 
affordances, and pre-maneuver behaviors provides a way of fusing together both 
external/environmental information and internal/driver information for predicting a 
specific maneuver.  It is likely that this framework may be generalized beyond lane 
changes and may help frame the problem for predicting other types of maneuvers also 
(e.g., turns, braking, or avoidance maneuvers). 
 
The naturalistic lane change data set was the only data set that was available that 
afforded an in-depth intent analysis of driver intent (it provided eye-gaze locations 3 s 
prior to the maneuver).  Hypotheses were generated for discriminating lane-change 
intents from non-lane-change events.  Simple comparisons between Lee et al.’s (2004) 
lane change data set and the null data sets of Mourant and Donahue (1974) and Carter 
and Laya (1998) suggest that a driver’s glance behavior tends to show specific patterns 
prior to lane changes.  Although it is difficult to assess at this stage, fusing data from the 
three modules: motive, affordance, and pre-maneuver behaviors may increase the 
probability of accurately inferring driver intention.  Despite the driving-simulator work of 
Salvucci and colleagues, the kinematic (e.g., yaw-rate) and control (throttle position) 
variables did not appear to be indicative of driver intentions before the maneuvers were 
executed or even of the maneuver once it had began.  
 
As useful as the naturalistic lane change data set clearly was, it only provided cases 
that preceded lane changes but did not include a set of null cases (where no lane 
change occurred).  Therefore, it could only be concluded that there are certain 
circumstances that appear to reliably coincide with lane changes.  The rate at which 
these circumstances occur when no lane change takes place could not yet be 
evaluated.  To examine the distribution of intent false alarms a set of null cases is 
required.  If such a data set were available, it would afford a more sophisticated 
examination of intent-inference that could investigate both types of errors (false 
positives and false negatives) and successes (true positives and true negatives).  Using 
the signal detection framework, this analysis could examine the precision of the 
detection algorithm (d’) and the bias of the criteria toward one type of error over another 
(β).  If an intent-inference system is used to suppress safety warning systems, false 
positives in this system would lead to false negatives in the safety warning systems 
(warnings when the driver actually needs them).  For this reason, the intent-inference 
system should consider adopting a bias (β) that produces more false negatives than 
false positives.  Bayes theorem is also likely to provide a useful way of measuring the 
reliability of the intent-inference system, by providing a framework for evaluating the 
probabilities of a specific maneuver, given the observed data pattern. 
 

 8-35



8.5.1 Human Factors Guidelines 

Clearly it is too early to make a useful set of human factors guidelines or recommendations.  
However, the VTTI data do suggest that the intent-inference problem may be approached 
using the modular framework that was described in Section 8.3 (Intent Detection 
Framework) that examines motive, affordances, and pre-maneuver behaviors.  Furthermore, 
these data suggest that most types of lane changes will not be able to be reliably detected 
with a turn signal alone or based upon kinematics (e.g., yaw-rate) and control (throttle 
position) sources of data.  Instead, it appears that glance locations may provide a useful 
source of information that can be fused with other sources of information (e.g., road 
geometry or radar data) to provide the basis for predicting lane changes. 

8.5.2 Phase II planning 

New naturalistic driving data must be collected that includes eye-tracking coordinates for 
both lane-change and non-lane-change events.  A time window that extends back longer 
than 3 s may also afford more accurate prediction of driver intent. To achieve these 
requirements, Delphi plans to instrument a vehicle with the necessary sensor suite 
(including an eye-tracking system) and distribute it among Delphi commuters with medium 
to long range commutes (e.g., greater than 15 min). To facilitate this data collection, Delphi 
will train these drivers to activate the instrumentation and collect naturalistic data on their 
commutes. During these commutes, data will be recorded that may be divided into sets of 
lane change, turn, and null (no lane change or turn) events. Task 8 (Intent) will then use this 
naturalistic data set to develop and iteratively tune algorithms with the goal of reliably 
detecting intentions with minimal false alarms. This naturalistic data set could also be used 
for post-hoc algorithm development (running new algorithms on previously recorded data) 
for many other SAVE-IT tasks. 
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